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Abstract. The analytical integration of a linearly interpolated function commonly used in 
the tetrahedron integration (TI) method is not correct and the calculated quantities do 
not satisfy crystal symmetry. We propose an improved method wherein the integration is 
restricted to a minimal volume which covers the irreducible part of the Brillouin zone with 
microcubes in contrast to those by Kleinman and Hanke and co-workers. We also extend 
this to a hexagonal crystal. The k-points in the correctly weighted TI method are shown to 
have the characteristics of special points and give accurate values for an insulator. The 
efficiency of the present method is discussed in comparison with the conventional TI method. 

1. Introduction 

The tetrahedron integration (TI) method introduced by Lehmann and Taut [l] and 
Jepson and Anderson [2] has been used extensively for the k-space integration of a 
function f(k) in many theoretical studies of solid state physics. The integral over the 
irreducible part of the Brillouin zone (IBZ) is replaced by the sum of integrals over non- 
overlapping (micro)tetrahedra filling the IBZ [3] where the four vertices of a tetrahedron 
are on the mesh points setting appropriately in the BZ for which the values of f(k) are 
given through some involved calculations, and inside the tetrahedron the integration is 
carried out analytically by using linear interpolation. Despite its efficiency, the TI method 
needs a relatively large number of k-points to attain a desired accuracy. However, the 
number of k-points is limited because the k-space integration is a part of other large 
numerical calculations such as total energy or self-consistent bandstructure calculations. 
Recently, Kleinman [4] pointed out that the misweighting of the k-pointsin the TI method 
produces an unexpectedly large error for the number of k-points usually used in realistic 
calculations [5]. Furthermore, calculated quantities do not satisfy the crystal symmetry. 
To remedy this deficiency, Kleinman proposed that for cubic crystals the integration 
should be taken over the whole BZ of a cubic superlattice which contains one, two and 
four BZS of sc, FCC and BCC, respectively. This super BZ is divided into (micro)cubes by 
using a cubic mesh. Each of the cubes is further subdivided into six equal-volume 
tetrahedra to which the TI method is to be applied. However, since the volumes of 
integration are 48,96 and 192 times larger than those of the TI method currently used 
[6-91 for sc, FCC and BCC, respectively, Kleinman's method is rather time consuming. 
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For the FCC crystal, Hanke et a1 [lo] give an improvement by using 8 of the cubic super 
BZ where a cube is divided into non-equal-volume tetrahedra. 

The misweighting problem results from the fact that the k-points on or near the 
surfaces and corners of the IBZ are not treated correctly due to the use of linear inter- 
polation. In this paper we will show that this problem can be avoided within the 
framework of linear interpolation by using the cubes which cover completely the IBZ and 
the superposition of twelve tetrahedra derived by two different schemes of division of a 
cube as will be shown in section 3: Kleinman substantially uses 48 tetrahedra for a cube 
derived by eight different schemes of division to attain the correct weighting for the k- 
points in the sc IBZ. The present method also satisfies crystal symmetry. Numerical 
comparisons of the present method with the conventional TI method by Skriver [9] will 
be given in section 4. The application to non-cubic crystals will be discussed in the 
appendix. 

2. Tetrahedron integration 

We will now consider the calculation of the following integral over the BZ with the 
volume Q by the TI method as 

4 

where and ~ ( k )  denote, respectively, the Fermi energy and the band energy of a wave 
vector k ,  8 denotes the unit step function and the suffix i runs over non-equivalent 
tetrahedra in the BZ. In (2.1) ui and wi are the volume and multiplicity of the ith 
tetrahedron with the wave vectors at its vertices given by (k i l ,  ki2, ki3, ki4). Hereafter we 
assume that all tetrahedra have the same volume U ,  and that the vertices are rearranged 
in the order of = &(kij) and the coefficients become 0 for 
E~ < and 1 for 2 E ~ ,  respectively. When the Fermi surface is present inside the ith 
tetrahedron, cijcan be calculated by using the linear interpolations ~ ( k )  = E, + a * ( k  - kj) 
and f(k) = f i  + b ( k  - kj) where a and b are determined by the values and f i  at the 
four vertices of the tetrahedron. Here we suppressed the suffix i for simplicity. The 
results are given as follows 

(i) for E~ s E F  < ~ 2 :  

S E~ S c3 6 .s4 with 

4 
r 

where Ajj, = (cF - E ~ , ) / ( E ~  - .si,) and 6, denotes the Chronecker delta. Equations (2.2)- 
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Figure 1. Numbering scheme for the eight vertices of a cube and a prism. 

Table 1. Schemes of division of a cube and a prism into six equal-volume tetrahedra. A set 
offourintegers representsa tetrahedronin thecubeor theprismwhoseverticesare numbered 
according to figure 1 .  

S, 1247 2346 2368 2467 2678 3568 
s2 1238 1345 1358 1457 1578 4567 
s3 1237 1345 1456 1567 2378 3578 
s4 1246 1267 2348 2678 3458 4568 
ss 1246 1267 2346 2356 2568 2678 
s6 1248 1478 2348 3458 4568 4678 

(2.4) create no calculational problem even if some of the values of have the same 
values in the respective cases. For the integration on the Fermi surface the coefficients 
off(kii) are given by 

3. Application to cubic crystals 

For an insulator, f (k i i )  at the four vertices of a tetrahedron have the same weights 
(volume elements reduced by 5 2 )  due to the use of the linear interpolation. Thus the 
results obtained depend upon the way in which the IBZ is divided into tetrahedra, since 
every vertex of a cube does not have the same weight when equation (2.1) is applied to 
six equal-volume tetrahedra in a cube in contrast to the three-dimensional trapezoidal 
rule which is a correct linear approximation: in the conventional TI [9] and Kleinman’s 
methods the weights associated withf(kii) for the eight vertices of a cube become 6 , 2 ,  
2 , 2 , 6 , 2 , 2 , 2  and 1 , 5 , 3 , 3 ,  1 , 5 , 3 , 3 ,  respectively, all in units of u,/452 (see figure 1). 
Therefore, we must pay particular attention to the k-points on or near the surfaces of 
the IBZ when we apply (2.1) to the integration over the IBZ. The situation is unchanged 
when the Fermi surface is present. 

Following Kleinman, we take a cubic super BZ with the edge length of 4n/Au where 
A is taken to be equal to 2 for sc and 1 for FCC and BCC, respectively, and a is the lattice 
constant of the respective crystals. We divide it into (2w3 cubes with edge length of 
2n/ANu and number the vertices of each cube as shown in figure 1. If we subdivide each 
cube with the volume U, = 52/(2N)3 into six equal-volume tetrahedra according to the 
two schemes SI and S2 shown in table 1 and superpose these with a weighting factor 4, 
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then we have the same weightspii = u$3Q for each vertex of the ith cube in accordance 
with the three-dimensional trapezoidal rule. This allows us to reduce the domain of the 
integration to 3 of the cubic super BZ. The wavevector of the vertex 1 of the ith cube is 
written in the Cartesian coordinates as 

kil = (2n/ANa)(nil, ni2, ni3) (3.1) 
with 0 =s nij < N .  We represent the ith cube by the triplet (nl, n2,  n3) where the suffix i 
is suppressed. Since the cubes having the triplets obtained by permutations of (nl, n2 ,  
n3) give the equivalent contributions to the integral, we can restrict the integer nj 
further to N > n1 Z n2 Z n3 Z 0. The multiplicity ws(nl, n2,  n3) of a non-equivalent cube 
becomes 8, 24, 24 and 48, respectively, for nl = n2 = n3, n l  = n2 # n3, n1 # n2 = n3 
and otherwise. The number of non-equivalent k-points, N k ,  is given by 
( N  + 1)(N + 2)(N + 3)/6. For a cube for which more than two of the nj are equal, some 
vertices are outside the IBZ. In this case we rearrange (n l ,  n2 ,  n3) of these vertices to 
(n;  , n ; ,  n ; )  with n ;  3 n; 2 n; by a permutation using the cubic symmetry. 

For the FCC and BCC crystals we can reduce the number of non-equivalent cubes 
further than in the sc crystal. In the case of FCC cubes (nl ,  n2 ,  n3)  and ( N  - n3 - 1, 
N - n2 - 1, N - n l  - 1) give equivalent contributions to the integral, so we can res- 
trict nj further to n l  + n2 + n3 <#N. Since the cubes with n l  + n2 + n3 =s 3N - 3 and 
those with QN - 3 < n1 + n2 + n3 < #N have one and no equivalent cube, the multi- 
plicities w(nl ,  n2,  n3) of these cubes are given by 2w, and w, with w, as the quantity 
defined in the sc case. Nk is given by ( N  + 2)(N2 + N + 6[N/2] + 6)/12 with [x] as 
the Gauss symbol. For BCC, a cube ( n l ,  n2,  n3) has three equivalent cubes given by 
{nl, N - n2 - 1, N - n3 - l}, { N  - n l  - 1, n2 ,  N - n3 - 1) and{N - n l  - 1, N - n2 - 
1, n3} where {nl, n2,  n3}means that the components are taken to be in descending order. 
Thus we can restrict nj further to n1 + n 2 <  N and w(nl,n2, n3) = 4w, for 
n l  + n2 d N -  2. Foracube(nl,n2, n3)withnl + n2 = N -  1, wisgivenbyw,, Qw,and 
2w, for nl  = n2 = n3, nl  # n2 = n3 and otherwise, respectively, and N k  = 
( N  + 3)(N2 + 3N + 6[N/2] + 8)/24. Though for both cases there appear to be instances 
where some vertices of a cube are outside the IBZ, the values of and fj for these vertices 
can be expressed by those inside the IBZ by using the cubic symmetry. 

As can be seen from the above discussions, for FCC and BCC the k-points are not 
necessarily on the surfaces or corners of the respective IBZ, i.e. we can choose N to be 
an arbitrary integer in contrast to the TI method currently used [6-91. Though there are, 
of course, other possibilities to attain the correct weighting by using, for example, the 
two schemes S3 and S4 shown in table 1, these give substantially the same results: there 
are small differences in determination of the Fermi surface inside each cube. 

4. Discussion 

For interesting cases in the application of k-space integration, f ( k )  is a totally symmetric 
function of the system considered and has the translational symmetry in the reciprocal 
lattice. In this casef(k) can be written in terms of the Fourier series of the direct lattice 
as 

f(k) = c F(R/)g/(k) (4.1) 

g,(k) = 2’ exp(ik SR,) 

1 

(4 * 2) 
S 
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Table 2. Comparison of (g@))e calculated by the present method with those of Skriver’s by 
the single tight-band models with E = cb + 0.7W. The symbol S denotes the values by 
Skriver’s method and the correct values are calculated by using more than lo4 points in the 
respective crystals. The averaged absolute errors (in units of of the density of state 
( 1  AD(&) 1 )  are obtained from 200 energy points. 

FCC OOO 110 200 211 220 

44 0.62 2.55 0.08 -0.72 -0.41 1.5 
85 0.62 2.62 0.07 -0.77 -0.43 1.0 
85 s 0.61 2.53 -0.02 -0.58 -0.20 1.2 
Correct 0.62 2.67 0.08 -0.85 -0.48 

BCC 000 111 200 220 311 

55 1.76 1.15 -0.71 -0.60 0.40 0.6 
55 s 1.77 1.16 -1.04 0.14 0.71 1.1 
Correct 1.75 1.24 -0.76 -0.64 0.39 

HCP 000 100 001 210 101 

64 0.41 5.18 -0.02 -0.75 -4.39 1.6 
64 S 0.42 5.16 -0.07 -0.40 -0.36 1.9 
Correct 0.41 5.34 -0.02 -0.89 -4.99 

DIA 000 110 200 211 220 

44 2.87 -2.31 0.86 1.30 -0.06 2.5 
85 2.86 -2.40 0.92 1.47 -0.11 1.6 
85 s 2.87 -1.70 0.86 2.65 0.83 2.0 
Correct 2.86 -2.45 0.97 1.60 -0.12 

where F(R,) is the Fourier coefficient and R I  denotes the representative or star of the 
translation vectors connected mutually throughRV = SRI where S acts as the point group 
parts of the symmetry operations and the prime on the summation means that the 
operationsRl = SRI are excluded except for the identity. The k-space integration of (4.1) 
is written as 

0: 

where we take 1 as 0 < lRll S lR21 S , . . and go(k) = 1. In cubic crystals we write R, in 
thecartesiancoordinatesas (A/2)(11, 1 2 ,  13)awithAdefinedinsection3 andinahexagonal 
crystal we write it as l l t l  + 12t2 + 13t3 with t l ,  t2 and t3 as the basis vectors of the direct 
lattice defined, respectively, by ( v 3 / 2 ,  -1/2,0)a, (O,l,O)a and (0, 0 , l )c  with a and c 
as the lattice constants where l j  is an integer for all cases. Hereafter we express R I  by 
I l l ,  12 ,  1 3 ] .  From equations (3 .1 ) ,  (4.2) and (A.l)  we can see that for an insulator 
(g,(k))&F vanishes except for [2Nl l ,  2N12, 2N13] and [ N l ( l l  + 1 2 ) ,  N1(211 - 1 2 ) ,  2N3l3] 
in cubic and hexagonal crystals, respectively. Therefore the integral (4.3) is represented 
accurately by F(0)  when N k  becomes large: the k-points in the present method have the 
characteristics of the special points [ l l ,  121. In Skriver’s method [9] the non-vanishing 
termsinthesummationof(4.3)startfrom[l, 1,0],[1, 1,0],[1, 1, l]and[l,O,O]forsc, 



7450 J Hama et a1 

Table3. Some of the interpolatedvalues E’(k) (in Ryd) of 55 k-points for the first conduction 
band of BCC iron and of 85 k-points for the second one of FCC copper obtained by using the 
values of 14 and 19 k-points as the input data for the respective crystals. The original data 
E(k) are taken from [13] and [14], respectively and k = (kx, k,, k,) is given in units of n/4a. 

BCC iron FCC copper 

110 0.155 0.154 
221 0.297 0.286 
300 0.300 0.297 
421 0.430 0.426 
441 0.418 0.418 
521 0.479 0.467 
610 0.459 0.455 
700 0.425 0.424 

110 
300 
432 
520 
543 
632 
730 
82 1 

0.292 0.291 
0.263 0.265 
0.284 0.291 
0.235 0.236 
0.284 0.284 
0.252 0.253 
0.245 0.237 
0.220 0.218 

FCC, BCC and hexagonal crystals, respectively. Thus the quantities calculated by the 
conventional TI method do not satisfy crystal symmetry. 

In order to look into the effect of the Fermi or constant-energy surface on the TI, 
we have calculated ( g , ( k ) ) ,  on the single tight-band models. The band energies of 
a wavevector k = ( k x ,  k, ,  k , )  for FCC, BCC, HCP and diamond crystals are written, 
respectively, as 

EFCC(k) = -4(cos(lk,a) cos(lk,a) + cos(hk,a) cos(ik,a) 

E B C C ( R )  = -8 COS ( i k , ~ )  C O S ( ~ ~ , U )  COs(tk,a) 

EH&) = 2[E,(k) * (8 + EO(k))1’2] cos(ik,c) 

E D I A ( ~ )  = +2(1 - tEFcc(k))1’2. 

+ cos(tk,a) cos(lk,a)) (4 * 4) 

(4.5) 

x ~ ~ ( k )  = 2 COS [ ( f i / 2 )  k,a] cos(ik,a) + cos(ik,a) (4 * 6 )  

(4.7) 

In calculating (gl(k)) ,  we take the energy as E = &b + 0.7W with &b and Was the bottom 
energies and widths of the respective bands and we include a spin factor of 2. In table 2 
we compare the values calculated by the present method with those by Skriver’s where 
the correct values are obtained by using more than lo4 points for the respective crystals 
and for HCP we take N 3  in (A.1) to be N 1 / 2 .  The density of state D ( E )  can be obtained 
by (2.1) by replacing c , , ( E ~ )  and f,, by ~ C , , ( E ) / ~ E  and 1, respectively. In table 2 we also 
show the averaged absolute errors of D(E)  estimated from 200 energy points. The results 
show that the present method gives more satisfactory values than Skriver’s for all crystals 
considered. 

For the integration off(k) over the BZ the present method gives accurate values even 
if N k  is small. However, when the Fermi surface is present we need a relatively large N k  
so as to obtain correct values. For a case where only small numbers of calculated ~ ( k )  
andf(k) are available due to the involved calculations needed, (4.1) gives a simple and 
accurate interpolation formula which satisfies crystal symmetry: the Fourier series are 
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truncated in finite terms so as to determine F(R,) from the available data by using a least- 
squares fitting method. Table 3 shows the interpolated values of ~ ( k )  for the first 
conduction band of BCC iron [13] with N k  = 55 and the second one of FCC copper [14] 
with Nk = 85 calculated by the augmented-plane-wave method. For the input data we 
use the values of 14 and 19 k-points for BCC iron and FCC copper, respectively. The 
interpolation is satisfactory for both cases. Since for a small value of N k  the errors in the 
k-space integration result from poor estimations of the constant-energy or Fermi surface, 
we can obtain more correct values if we calculate the integration for a larger N k  by using 
the interpolated values of ~ ( k )  andf(k). 

Appendix 

An extension of the present method to tetragonal and orthorhombic crystals can be 
accomplished by replacing the cube by a rectangular prism. Some modifications, 
however, are necessary for a hexagonal crystal. We consider the TI over the par- 
allelepiped constructed by the three vectors u1 = (b ,  + bz) /3 ,  u2 = (2bl - bz) /3  and 
u3 = ib3 with bj as the basis vectors of the reciprocal lattice orthogonal to t i  as defined in 
section 4. This domain is four-times larger than the IBZ. We divide it into N i N 3  
(micro)prisms using the mesh given by 

k = (nl/Nl)ul + (n2/N,b2 + (n3/N3)u3 (‘4.1) 
with the integers taken to be 0 s n,,  n2 < N1 and 0 s n3 < N3.  The volume of a prism is 
given by up = Q/(6N:N3) with 52 = 1 6 n 3 / ( f l  a2c). For non-cubic crystals we definepjj 
to be (ZJp/4Q)E(q,, tj2, g3) where E denotes the spherical excess in spherical trig- 
onometry with cjj as the unit vectors along the three edges associated to a vertex. The 
definition is in accordance with the weights given by the three-dimensional trapezoidal 
rule in the oblique coordinates. For the hexagonal crystal pij  becomes & and Q in units 
of up/52, respectively, for j  = 1 , 3 , 5 , 7  and 2 ,4 ,6 ,8  (see figure 1). If we subdivide each 
prism into six equal-volume tetrahedra according to the two schemes S, and S6  
given in table 1 and superpose these with the weighting factor 1, then we have 
the correct weighting when we apply the TI to these tetrahedra. Considering that 
prisms (nl ,  n2,  ns)  (n2 ,  n,, n3),  ( N I  - n1 - 1, N1 - n2 - 1, n3) and ( N ,  - n2 - 1, 
N1 - n1 - 1, n3) are equivalent, we can restrict nj to the IBZ defined by 0 s n2 s n , < N I ,  
nl  + n2 < N1 and 0 s n3 < N3. For this case we have w(nl,  n2 ,  n3) given by 6 for nl = 
n2 and 2nl + 1 = N I ,  12 for nl = n2 and 2nl + 1 # N I ,  12 for n l  + n2 = N1 - 1 
and 2nl + 1 # N1, and 24 for otherwise, respectively, and N k  = ([N,/2] + 1) 
([N,/2] - l)(N3 + 1). Since some vertices of the prisms with n l  = n2 and/or n1 + n2 = 
N1-1 are outside the IBZ, we rearrange (ni1n2,n3) of these vertices to (n;,n;,n;) 
for nl  + n2 < N I  and ( N I  - n; ,  N1 - n;  ,123)  for n1 + n2 3 N I  where n;  and n; denote, 
respectively, the larger and smaller ones of n1 and n2 in order to express &(kj)  andf(kj) 
by those of the k-points inside the IBZ. 
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